- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000000010000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Chowdhury, Suman K (1)
-
Hasan, Md Mehedi (1)
-
Parmar, Harshit (1)
-
Rahman, Senjuti (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract PurposeThe objective of this study was to develop a novel AI-ensembled network based on the most important features and affected brain regions to accurately classify and exhibit the pattern of progression of the stages of Cognitive Impairment (CI). MethodsWe proposed a novel ensembled architecture, 3D ResNet-18 - RF (Random Forest), and used this network to categorize the stages of Alzheimer’s disease (AD). The residual unit (blocks of ResNet) was introduced to the 3D Convolutional Neural network (CNN) to solve the degradation problem. It was considered an innovative strategy since the combination with fine-tuning resulted in higher accuracy. This network was trained on selected features and affected brain regions. The structured magnetic resonance images (MRI) were collected from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, and the random forest was used for determining the importance of the features and affected regions from the parcellated 170 regions of interest (ROIs) using Atlas, automated anatomical labeling 3(AAL-3). This framework classified five categories of AD and detected the progression pattern. ResultsThe proposed network showed promising results with a 66% F-1 score, 76% sensitivity, and 93.5% specificity, which outperformed the performance of conventional methods for categorizing five categories. Ventral Posterolateral and Pulvinar lateral regions were the regions most affected, indicating the progression from early MCI to AD. The five-fold validation accuracy for the developed model was 60.02%. ConclusionThe results showed that the gray matter to white matter ratio was the most significant feature, which also accurately predicted the progression pattern. The performance metrics fluctuated with different hyperparameters, but they never exceeded 0.05% of the estimated results, indicating the validity and originality of the suggested methodology.more » « less
An official website of the United States government
